ElmerSolver Manual

Juha Ruokolainen, Mika Malinen, Peter Raback,
Thomas Zwinger, Antti Pursula and Mikko Byckling

CSC - IT Center for Science

Feb 6, 2014

ElmerSolver Manual

About this document

The ElmerSolver Manual is part of the documentation of Elfiréte element software. EImerSolver Man-
ual describes the Elmer Solver options common for all speeifjuation solvers. The different equations
solver options are described separately in EImer Modelsudai he EImerSolver Manual is best used as a
reference manual rather than a concise introduction to titéem

The present manual corresponds to Elmer software versfo? Windows NT and Unix platforms.
The latest documentations and program versions of EImenaitable (or links are provided) at

http://www.csc.fi/elmer

Copyright information

The original copyright of this document belongs to CSC — Iht@efor Science, Finland, 1995-2009. This
document is licensed under the Creative Commons Attribeio Derivative Works 3.0 License. To view a
copy of this license, visittp://creativecommons.org/licenses/by-nd/3.0/

Elmer program is free software; you can redistribute it andiodify it under the terms of the GNU
General Public License as published by the Free Softwaradation; either version 2 of the License, or (at
your option) any later version. Elmer software is distréalitn the hope that it will be useful, but without
any warranty. See the GNU General Public License for moraildet

Elmer includes a number of libraries licensed also under fieensing schemes compatible with the
GPL license. For their details see the copyright noticebésburce files.

All information and specifications given in this documenvédeen carefully prepared by the best ef-
forts of CSC, and are believed to be true and accurate as efiriing. CSC assumes no responsibility or
liability on any errors or inaccuracies in EImer softwarelocumentation. CSC reserves the right to modify
Elmer software and documentation without notice.

http://www.csc.fi/elmer
http://creativecommons.org/licenses/by-nd/3.0/

Contents

Table of Contents

1

Solving a multiphysics problem with the solver of ElImer: Fundamentals

1.1 BaSiCCONCEPIS. o o o o e e
1.2 Handling interactions of multiple physical phenomena
1.3 Thekeyabilities

Structure of the Solver Input File

2.1 Introduction. e
2.2 Thesections of solverinputfile.
2.3 Keywordsyntax
2.4 RunningseveralsequUENCEeS v i i e e

Restart from existing solutions

3.1 Restartfile
3.2 Initialization of dependentvariables

Solution methods for linear systems

4.1 Introduction. L
4.2 Directmethods.
4.3 Preconditioned Krylovmethods
4.4 Multilevelmethods.
4.5 Preconditioning viainneriterations. L
4.6 Keywordsrelatedto linear systemsolvers
4.7 Implementationissues. e
Bibliography

Nonlinear System Options

5.1 Introduction.
5.2 Keywords related to solution of nonlinear systems.

Integration of time-dependent systems

6.1 Introduction.
6.2 Time discretization strategies.
6.3 Keywords related to time discretization L.
6.4 On the treatment of time derivatives in Elmer Solvercode.

Solving eigenvalue problems

7.1 Introduction.
7.2 Theory. e e
7.3 Keywords related to eigenvalue problems.
7.4 Constructing matrices Mand D in Solvercade

CONTENTS 4
8 Generic solver utilities 44
8.1 Solveractivation 44
8.2 Variablenames. e 44
8.3 Exportedvariables. 45
8.4 Dirichletconditions. L 45
8.5 SoftLimiters 47
8.6 Periodicconditions. 47
8.7 Mortarconditions. e 48
8.8 Settingnodalloads 50
8.9 Computingnodalloads 50
8.10 Energynorm e e e e 51
8.11 Computing nodalweights. e 51
8.12 Active and passiveelements. 51
8.13 Timingthe solvers. 51
9 Meshing Utilities 53
9.1 Introduction. e 53
9.2 Keywordsrelated tomesh utilites o Lo 53
10 Adaptive Solution 54
10.1 Introduction. L e 54
10.2 TheOrY. . . . o 54
10.3 Keywords related to the adaptive solutian. 56
10.4 Implementingown errorestimatars 56
11 Parallel runs 59
11.1 Introduction. e 59
11.2 Preprocessingof ParallelRuns. 60
11.3 Parallel ComputationsinElmer. 63
11.4 Post-processingof ParallelRuns. 68
12 Compilation and Linking 70
12.1 Compilingthe wholepackage 70
12.2 Compiling a user defined subroutine. o . 71
13 Basic Programming 72
13.1 Introduction. L 72
13.2 Basic Elmer Functions and Structures. L o 72
13.3 Writinga User Function. 80
13.4 Writinga Solver 92
13.5 Compilation and Linking of User Defined Routines/Fioved 104
A Format of mesh files 105
A.1 Theformatofheaderfile. 105
A.2 Theformatofnodefile. 105
A.3 Theformatofelementfile. 106
A.4 The formatof boundary elementfile. L. 106
A.5 Theformatofshared nodesfile. 106
A.6 Exceptionson parallelmeshformat 107
B Format of result output files 108
B.1 Formatversions e e 108
B.2 Generalstructure. 108
B.3 Thepositionsfile. e 111
C Format of EImerPost Input File 112

CONTENTS 5

D Basic element types 114

E Higher-order finite elements 117
E.1 Theory. e 117
E.2 Higher-orderelementsinElmer 118
E.3 ElmerSolver services for higher-orderelements 120
E.4 Higher-orderelements. 122
E.5 Line e 122
E.6 Quadrilateral e 123
E.7 Triangle. e e e 124
E.8 Brick 125
E.9 Tetrahedron. e 127
E.10 Pyramid. e 128
E.11 Wedge. 130
Bibliography e e e e 132

F Face and edge elements 133
F.1 The construction of face elementinterpolation. 133
F.2 The construction of edge elementinterpolation. 137
Bibliography e e 139

Index

Chapter 1

Solving a multiphysics problem with the
solver of Elmer: Fundamentals

Elmer software has been developed multiphysics simulaiiomind. Thus, in addition to offering ways
to produce computational solutions to single-physics nwo(lke available collection of which is described
in the Elmer Models Manual), EImer provides proceduresfeating computational models which describe
interactions of multiple physical phenomena. Our intemtiere is to give an overview how this functionality
is built into the solver of EImer associated with the indegemt program executable ElImerSolver.

1.1 Basic concepts

The models handled by Elmer may generally be stationary olugenary, with nonlinearities possible
in both the cases. Starting from the weak formulation of thebfem, finite element approximation and
advancing in time with implicit methods are typically amgaliin order to obtain the computational version
of the model. In the simplest case of single-physics modelarg then lead to solving equations

F(u) =0, (1.1)

whereu represents either the vector of coefficients in the finitenellet expansion of the stationary solution
or the coefficient vector to describe the evolutionary fieiement solution at a given time= ¢;. Thus, in
the case of evolution, the problems of the tyfel) are solved repeatedly when advancing in time.

For linear models the probleri.{l) reduces to solving a linear system via defining

F(u)=b— Ku

where the coefficient matrik is referred to as the stiffness matrix alhdorresponds to the right-hand side
vector in the linear system. Otherwigeis a nonlinear mapping and an iteration is needed to handle th
solution of the problem1(.1). Available nonlinear iteration methods generally dependhe model, as the
definition of the linearization strategy is a part of the cart@pional description of each physical model.

We note that many single-physics models offer the possitofi using the Newton iteration where the
current nonlinear iterate(” to approximate: is updated at each iteration step as

DF (u™)[60™] = —F(u(™),

(1.2)
u(7n+1) _ u(m) + 5(771)’
where DF(u("™) is the derivative ofF’ at«(™). Thus, performing the nonlinear solution update again
entails the solution of the linear system at each iterattep.sAs an alternate to the Newton method, lin-
earization strategies based on lagged-value approxingéiee also often available. In addition, relaxation
is conventionally offered as a way to enable convergencases where the basic nonlinear iteration fails

CSC - IT Center for Science [@)sv-nD |

1. Solving a multiphysics problem with the solver of ElImer: Rundamentals 7

to produce convergence. Given the current nonlinear éeré@) and a computed correctioin(™ to the
approximation, the new nonlinear iterate is then defined by
WD) — () |\ (m) 5(m)

)

where(™) is an adjustable parameter referred to as the relaxati@myeter.

1.2 Handling interactions of multiple physical phenomena

Having considered the basic concepts in the context ofsipglsics models, we now proceed to describe
how the modularity employed in the design of Elmer allowsaisreate models which represent interactions
of multiple physical phenomena. To this end, we assume ligatdmplete model describes the interaction
of N constituent models, the computational versions of whiehpaimarily associated with the coefficient
vectorsu;, i = 1,2, ..., N. As before, the coefficients containediinare associated with the finite element
expansion of either the stationary solution or the evohaiy solution at a time level= .

The fully discrete version of the coupled model leads to finga problem of the form

Fi(ui,ug,...,uy) = 0,
Fg(ul,m,...,u]\r) = 0,

(1.3)
Fy(uy,ug,...,uny) = 0.

If all the constituent models are linear, the probldn8) corresponds to solving the linear system where the
coefficient matrix is @V x N block matrix. Otherwisel(.3) describes a nonlinear problem. Although the
solution of (L.3) could in principle be done in the same way as explained irctirgext of single-physics
models in Sectiorl.], i.e. by performing either a coupled linear solve or Newttmation, the coupled
problems have usually been handled differently in orderabée the reuse of solvers for single-physics
models and the easy extendability of the code to handle nelicafions.

To this end, the nonlinear Gauss-Seidel iteration is ug@aglplied, so that the coupling of the models is

resolved via generating new coupled system iteratés= (uﬁj) , uéj), - ,u%)) as
Fl(ugj),ugjfl),ugjfl),...,u%il)) = 0,
Fg(ugj), ué‘j), ugjfl), e ,u%il)) = 0,
e (1.4)
FN(ugj),uéj),...,u%)) = 0.

It is noted that thé:th discrete model description id.4) depends implicitly only on the coupled system
iterate to its primary variable;, while the dependencies on the other constituent modelvias are treated
explicitly. This brings us to solving a nonlinear singleldiproblem

F(u,(cj)) = Fi(vy,... ,vk,l,u,(cj), Ukt1,--.,vn) = 0, with all v; given, (1.5)

which is handled by using the methods already describeddtiddel.1L We also note that if all the con-
stituent models are linear the nonlinear Gauss-Seidettiter (1.4) reduces to the block Gauss-Seidel itera-
tion for linear systems. Relaxation may again be appliechadtampt to improve the convergence behaviour
of the basic iteration1(.4).

Itis good to pause here to stress that the main advantage afitspted nonlinear Gauss-Seidel scheme is
its support for the modular software design. Also, it brings$o handling coupled problems via solving linear
systems which are smaller than those which would result freating all constraints irl(3) simultaneously.
Despite these merits, the suitability of the loosely codpteration (L.4) generally is case-dependent as
convergence problems may occur in cases where a strongcphgsiupling is involved. Such problems
are often best handled by methods which treat all the coestitmodels in1.3) simultaneously. Certain
physical models available in Elmer indeed employ this aligg tightly coupled solution strategy. However,

CSC - IT Center for Science [@)sv-nD |

1. Solving a multiphysics problem with the solver of ElImer: Rundamentals 8

these models have initially been developed independeslgommon Elmer utilities for creating tightly
coupled iteration methods in a general manner are lessajseabl

To summarize, the following pseudo-code presentationriescthe basic loosely coupled iteration
scheme employed by the solver of Elmer. This rough desoripthay be helpful in summarizing what
needs to be controlled overall to create a working compuriatisolution procedure for a coupled problem.

I The time integration loop

fork=1: M
Generate an initial guess?) = (u§0>, ugo), . ,u§3>) for the coupled system solutionfat ¢,
! The nonlinear Gauss-Seidel iteration
forj=1,2,...
| Generate the next coupled system iterdté by performing single-field updates
fori=1:N

Setv, = u) fori =1,2,...,i—1
Sety; = ul(kl) forl=7+1: N

Perform nonlinear iteration to soN€ (vy, ..., v;_1, ugj), Vit1,---,UN) =0
Apply relaxation to set.” := w7~ + o, (u — u7V)
end
end
end

Here the descriptions of the termination criteria for tlerations have been omitted. It is also noted that,
obviously, the time integration loop is not needed in theeaafsa stationary problem. On the other hand,
in the case of stationary simulation it is possible to replgne time integration loop by a pseudo-version of
time stepping to enable performing multiple solutions foaage of model parameter values.

1.3 The key abilities

In the following, we give some additional information on tkey abilities of the solver of Elmer to create
computational solution procedures.

1.3.1 Extendability by modular design

A module of the EImer software which enables the creatiohefliscrete model description of the tyie5)

and its solution with respect to the primary variable is gaty called a solver. The solvers of Elmer are
truly modular in this manner and have a standard interfabas;Teach solver usually contains an implemen-
tation of the nonlinear iteration, instructions to assearibe corresponding linear systems from elementwise
contributions, and standard subroutine invocations toalgtsolve the linear systems assembled.

It follows that enabling an interaction with another fiel@siynated by; in (1.5), is simply a matter of
solver-level implementation. Therefore, interactionsalithave not been implemented yet can be enabled
by making modifications which are localized to the solversaddition, a completely new physical model
may be added by introducing a new solver which comprises aratpsoftware module and which can be
developed independently with respect to the main prograsra ¥esult, a loosely coupled solution procedure
for a coupled problem based on the new physical model mayndgsachieved by making only solver-level
modifications.

1.3.2 Model-specific finite element approximation

In the most basic setting all constituent model variakblgs = 1, ..., N, of a coupled problem are approx-

imated by using the same piecewise polynomial basis funstitefined over a single mesh. In addition to
this, the solver of Elmer offers a built-in functionality perform a coupled problem simulation by using
solver-specific finite element meshes. The solver deserips then augmented by the specification of the

CSC - IT Center for Science [@)sv-nD |

1. Solving a multiphysics problem with the solver of ElImer: Rundamentals 9

independent mesh which the solver uses. To make this furadtio connection with the solution of cou-
pled problems, Elmer has the capability of performing thetsan data transfer, which is needed between
the solvers in the loosely coupled solution procedure, evleen the meshes are non-matching. It must be
understood, however, that the loss of high-resolutionildataunavoidable when the high-resolution field is
represented by using a coarser finite element mesh.

1.3.3 Approximation by various finite element formulations

Elmer has traditionally employed the Galerkin finite eletregoproximation of weak formulation based on
the Lagrange interpolation basis functions. In this cotinacthe piecewise polynomial approximation of
degreel < p < 3is possible for 2-D models, while 3-D models may be disceetiby using the elements
of degreel < p < 2. The isoparametric mapping to describe curved elementshiaflso supported with
these traditional elements.

Discrete models based on more recent versions of the Galéniie element approximation are also
possible. As an alternate to using the standard Lagrangeiation basis functions, the Galerkin approxi-
mation based on using high-degree piecewise polynomial®eamployed. In this connection, the degree
of polynomial approximation can also be defined elementwisth EImer providing an in-built mechanism
to guarantee the continuity of any solution candidate, abitheffect the use of thep-version of the finite
element method is enabled. However, generic ways to descutved body surfaces accurately in connec-
tion with the high-degree finite elements have not been implged yet which may limit the utility of these
elements.

The way to define the high-degree approximation is based®itd#a that a background mesh for rep-
resenting the standard lowest-degree continuous finiteeieexpansion is first provided so that a specific
element type definition in relation to elements presentéifickground mesh may then be given to enhance
the approximation. The same idea has been adapted to citbateatternate finite element formulations.
For example, finite element formulations which enhance pipe@imation defined on the background mesh
by a subscale approximation spanned by elementwise bubble functions can be obtained in this way.
We note that this strategy is widely used in Elmer to stabilitherwise unstable formulations. Another
example of the use of the user-supplied element definititate® to creating approximations based on the
discontinuous Galerkin method. As a final example we merttiah enhancing the approximation on the
background mesh by either face or edge degrees of freedothandmitting the original nodal degrees of
freedom is also possible. This leads to a suitable set of ks for creating discretizations based on the
Raviart-Thomas or edge element interpolation.

1.3.4 Parallel computing

A strength of the solver of Elmer is that it supports the us@artallel computing. This opportunity sig-
nificantly widens the range of problems which can be considle Additional details on utilizing parallel
computers are found elsewhere in this manual.

1.3.5 Linear algebra abilities

This exposition should have made it clear that having thktylo solve large linear systems efficiently is a
central aspect of the simulation process with EImer. Asa@rgld, in the basic setting a linear solve is needed
to obtain the solution update at each step of the nonlineation. In practice linear solves are usually done
iteratively, revealing one unexposed iteration level iiatien to the pseudo-code presentation in the end of
Sectionl.2

The solver of Elmer offers a large selection of strategiesawstruct linear solvers. The majority of
them are directly implemented into Elmer software, butriiaiges to exploit external linear algebra libraries
are also available. Typically the most demanding aspediénuse of linear solvers relates to identifying
an effective preconditioning strategy for the problem atchaTraditionally EImer has employed generic
preconditioning strategies based on the fully algebrapeagch, but recently alternate block preconditioning
strategies which typically try to utilize physics-basetitipgs have also been developed.

CSC - IT Center for Science [@)sv-nD |

Chapter 2

Structure of the Solver Input File

2.1 Introduction

Solving partial differential equation (PDE) models witle tsolver of EImer requires that a precise description
of the problem is given using the so-called solver input Eligfly referred to as the sif file. This file contains
user-prepared input data which specify the location of nfilhand control the selection of physical models,
material parameters, boundary conditions, initial cdndg, stopping tolerances for iterative solvers, etc. In
this chapter, the general structure of the file is describvide.explain how the input data is organized into
different sections and describe the general keyword sywtzixh is used in these sections to define the
values of various model parameters and to control the soigiocedures.

In the case of simple problem setups the solver input file neawiitten automatically by the prepro-
cessor of ElImer software, so that knowing the solver inpatitirmat may be unnecessary. Creating a more
complicated setup, or using keywords introduced by the, lssvever, requires the knowledge of the file
format and keyword syntax.

In the following the general structure of the input file isffilsistrated by using simple examples, without
trying to explain all possibilities in an exhaustive mannére then describe the keyword syntax in more
detail, showing also how model parameters whose valuesdegesolution fields can be created. The later
chapters of this manual, and Elmer Models Manual, whichdeswon describing the PDE models Elmer can
handle, provide more detailed material on specific issuseETutorials also gives complete examples of
solver input files.

2.2 The sections of solver input file

The material of the solver input file is organized into diffiet sections. Each section is generally started
with a row containing the name of the section, followed by mbar of keyword commands, and ended with
a row containing the worend. The names for starting new sections are

e Header
e Simulation

Constants

Body n

Material n

Body Force n

Equation n

CSC - IT Center for Science [@)sv-nD |

2. Structure of the Solver Input File 11

e Solver n
e Boundary Condition n
e Initial Condition n

Heren associated with the section name represents an integdifigieneeded for distinguishing between
sections of the same type. A basic keyword command includadection is nothing more than a statement
which sets the value of a keyword with an equal sign.

In the following we describe how the sections are basicaligraged without trying to explain all possi-
bilities in an exhaustive manner. The later chapters ofrttasual and Elmer Models Manual provide more
detailed material on specific issues. Elmer Tutorials aigesgcomplete examples of solver input files.

Header section

The location of mesh files is usually given in the header secften this is also the only declaration given
in the header section. If the ElImer mesh files (see Appendiar@)ocated in the directory ./mymesh, the
header section may simply be

Header
Mesh DB "." "mymesh"
End

Note that separate equations can nevertheless be discretiing different meshes if the location of mesh
files is given in the solver section described below.

Simulation section

The simulation section is used for giving general informiatihat is not specific to a particular PDE model
involved in the simulation. This information describes ttwordinate system used, indicates whether the
problem is stationary or evolutionary, defines the file nafoesutputting, etc. Without trying to describe
many possibilities and the details of commands, we only tiiedollowing simple example:

Simulation
Coordinate System = "Cartesian 2D"
Coordinate Mapping(3) = 1 2 3
Coordinate Scaling = 0.001
Simulation Type = Steady State
Steady State Max lterations = 1
Output Intervals(1) = 1
Post File = "case.ep”
Output File = "case.dat"

End

Constants section

The constants section is used for defining certain physawadtants. For example the gravity vector and the
Stefan-Boltzmann constant may be defined using the commands

Constants
Gravity(4) = 0 -1 0 9.82
Stefan Boltzmann = 5.67e-08
End

If the constants are not actually needed in the simulatiig gection can also be left empty.

CSC - IT Center for Science [@)sv-nD |

2. Structure of the Solver Input File 12

Body, material, body force and initial condition sections

The Elmer mesh files contain information on how the compaoiteati region is divided into parts referred
to as bodies. A body section associates each body with artiequst, material properties, body forces,
and initial conditions by referring to definitions given irspecified equation section, material section, body
force section, and initial condition section. To manage dalds, the different sections of the same type
are distinguished by integer identifiers that are parts @fstction names. Note that the integer in the body
section name is an identifier for the body itself.

For example, one may define

Body 1
Material = 1
Body Force = 1
Equation = 1
Initial Condition = 2
End

Material properties, body forces, an equation set, anéhinibnditions are then defined in the material
section

Material 1

End

the body force section

Body Force 1

End

the equation section

Equation 1

End

and the initial condition section

Initial Condition 2

End

What material properties and body forces need to be spediéipends on the mathematical models involved
in the simulation, and the initial condition section useddting initial values is only relevant in the so-
lution of evolutionary problems. We here omit the discussib these very model-dependent issues; after
reading this introductory chapter the reader should betahlederstand the related documentation given in

Elmer Models Manual, which focuses on describing the diffiémathematical models, while the contents
of equation section will be described next.

Equation and solver sections

Equation section provides us a way to associate each bodywsit of solvers, where each solver is typically
associated with the ability to solve a certain physical niarfethe definition of solver given in the beginning
of Sectionl.3.1 Thatis, if the set defined consists of more than one solgeeral physical phenomena may
be considered to occur simultaneously over the same redispace. The actual definitions of the solvers
are given in solver sections, the contents of an equatiatioseloeing basically a list of integer identifiers
for finding the solver sections that define the solvers. Thevked commands given in the solver sections
then control the selection of physical models, linear@aprocedures of nonlinear models, the selection of
solution methods for resulting linear equations, convecgdolerances, etc.
For example, if only two solvers are needed, one may simginea list of two solver identifiers

CSC - IT Center for Science [@)sv-nD |

2. Structure of the Solver Input File 13

Equation 1
Active Solvers(2) = 1 2
End

Then the solver definitions are read from the solver sections

Solver 1
End
and

Solver 2
End
Finally, we give an example of solver definitions, withowfitig to explain the commands at this point;

Solver 1

Equation = "Poisson"

Variable = "Potential"

Variable DOFs = 1

Procedure = "Poisson" "PoissonSolver"

Linear System Solver = "Direct"

Steady State Convergence Tolerance = 1le-06
End

Boundary condition section

Boundary condition sections define the boundary conditionthe different models. The Elmer mesh files
contain information on how the boundaries of the bodies anie@l into parts distinguished by their own

boundary numbers. The keywoT@rget Boundaries is used to list the boundary numbers that form
the domain for imposing the boundary condition. For exarttipedeclaration

Boundary Condition 1
Target Boundaries(2) = 1 2

End
means that the boundary condition definitions that followaarn the two parts having the boundary numbers
land 2.

Text outside sections

We finally note that some commands, such as comments staitedhe symbol ! and MATC expres-
sions described below, may also be placed outside sectiontias. An exception of this type is also the
command

Check Keywords "Warn"

usually placed in the beginning of the input file. When thismaeand is given, the solver outputs warning
messages if the input file contains keywords that are nadig the file of known keywords. If new
keywords are introduced, misleading warning messageseandided by adding the new keywords to the
keyword file SOLVER.KEYWORD®Bcated in the directory of the shared library files of EI®alver. The
other options includenore, abort, silent

There is also the commandsho on andecho off that may be used to control the output of the
parser. This is mainly intended for debugging purposes.defieult isoff .

CSC - IT Center for Science [@)sv-nD |

2. Structure of the Solver Input File 14

2.3 Keyword syntax

As already illustrated, a basic keyword command used indhesinput file is a statement which sets the
value of a solution parameter with the equal sign. Such a camanin its full form also contains the data
type declaration; for example

Density = Real 1000.0
Valid data types generally are

o Real

Integer

Logical
e String
o File

If the keyword is listed in the keyword fiISOLVER.KEYWORD® e data type declaration may be omitted.
Therefore, in the case of our example, we may also define

Density = 1000.0

The value of a keyword may also be an array of elements of pedata type, with the array size
definition associated with the keyword. We recall our pragi@xamples of the equation and boundary
condition sections, where we defined two lists of integensgihe commands

Active Solvers(2) = 1 2

and

Target Boundaries(2) = 1 2

Two-dimensional arrays are also possible and may be defmed a

My Parameter Array(3,3) = Real 1 2 3 \
456 \
789

Defining parameters depending on field variables

Most solver parameters may depend on time, or on the fieldbi@s defined in the current simulation
run. Such dependencies can generally be created by meaabubért data, MATC functions, or Fortran
functions. MATC has the benefit of being an interpreted lawg) making an additional compilation step
with a compiler unnecessary.

Simple interpolating functions can be created by meansofiéa data. The following example defines
the parametebensity the value of which depends on the variabEmperature

Density = Variable Temperature
Real
0 900
273 1000
300 1020
400 1000
End

CSC - IT Center for Science [@)sv-nD |

2. Structure of the Solver Input File 15

This means that the value @fensity is 900 whenTemperature is 0, and the following lines are
interpreted similarly. EImer then uses linear interpalatio approximate the parameter for argument values
not given in the table. If the value of the independent vdeiab outside the data set, the first or the last
interpolating function which can be created from the tatadavalues is used to extrapolate the value of the
parameter.

If the field variable has several independent componenth, asithe components of displacement vector,
the independent components may be used as arguments intefudefinition. For example, if a three-
component field variable is defined in a solver section usisgcbommands

Variable = "Displ"
Variable DOFs = 3

then the solver of EImer knows, in addition to the three-congnt vectoDispl , three scalar fieldBispl
1, Displ 2 andDispl 3 . These scalar fields may be used as independent variablasameter defini-
tions and used in the definitions of initial and boundary ¢tioidls, etc.

More complicated functions can be defined using MATC langudgere the basic usage of MATC in
connection with the solver input file is illustrated; for asditional documentation, see a separate manual
for MATC. For example, one may define

Density = Variable Temperature
MATC "1000* (1-1.0e-4 =« (tx-273))"

This means that the paramegnsity depends on the value @emperature as
p=po(l =BT —Tp)), (2.1)

with po = 1000, 3 = 10~* andT, = 273. Note that the value of the independent variable is knowix as
in the MATC expression.

If the independent variable has more than one componenvattiebletx will contain all the compo-
nents in valuesx(0) ,tx(1) ,...t1x(n-1) , wheren is the number of the components of the independent
variable. A MATC expression may also take several scalarraents; one may define, for example,

My Parameter = Variable Time, Displ 1
Real MATC ".."

The values of the scalar field$me andDispl 1 can then be referred in the associated MATC expression
by the name#x(0) andtx(1l) , respectively.

In addition to using MATC functions, Fortran 90 functionsyradso be used to create parameter defini-
tions, etc. In the same manner as MATC functions are used, ayedafine

Density = Variable Temperature
Procedure "“filename" "proc"

In this case the file "filename" should contain a shareabléUsix) or .dIl (Windows) code for the user
function whose name is "proc”. The call interface for thetfeor function is as follows

FUNCTION proc(Model, n, T) RESULT(dens)
USE DefUtils)
IMPLICIT None
TYPE(Model_t) :: Model
INTEGER :: n
REAL(KIND=dp) :: T, dens

dens = 1000 * (1-1.0d-4(T-273.0d0))
END FUNCTION proc

The Model structure contains pointers to all informatiooatithe model, and may be used to obtain field
variable values, node coordinates, etc. The argument e imtiex of the node to be processed, and T is the
value of the independent variable at the node. The functionlsl finally return the value of the dependent
variable.

The independent variable can also be composed of seveegdémdent components. We may thus define

CSC - IT Center for Science [@)sv-nD |

2. Structure of the Solver Input File 16

Density = Variable Coordinate
Procedure "filename" "proc"

Now the argument T in the Fortran function interface showddlbreal array of three values, which give the
X,y and z coordinates of the current node.

Parameterized keyword commands

The solver input file also offers possibilities for creatjparameterized commands that utilize MATC. In the
solver input file an expression following the symbol $ is gaflg interpreted to be in MATC language. If
the solver input file contains the lines

$solvertype = “lterative"
$tol = 1.0e-6

then one may define, e.g.,

Solver 1

Linear System Solver = $solvertype

Linear System Convergence Tolerance = $tol
En.OII.
Solver 2
Linear System Solver = $solvertype
Linear System Convergence Tolerance = $100 * tol

End
Alternative keyword syntax

Some keyword commands may be given by using an alternativexsyhat may sometimes be needed. The
size of an integer or real number arrays may be given in plaesigin connection with the keyword, but also
with the Size declaration. Therefore the following are exactly the same

Timestep Intervals(3) = 1 10 100
Timestep Intervals = Size 3; 1 10 100

This feature is useful when giving vectors and matrices mdlGUI since there the keyword body is fixed
and cannot include any size declaration. Note that in thevaltlee semicolon is used as an alternative
character for newline.

Another convention is to use two colons to make in-lined diédins in the sif files. The following two
expressions are equal

Body Force 1
Heat Source = 1.0
End

and

Body Force 1 :: Heat Source = 1.0

CSC - IT Center for Science [@)sv-nD |

2. Structure of the Solver Input File 17

2.4 Running several sequences

Execution within command file

When reading the stringUNn the command file, the solver stops the reading and perforensomputation
with the instructions so far obtained. After a successfudcetion the solver continues to interpret the
command file. Using this functionality it is therefore pdidsito create scripts where some parameter value
is changed and the problem is recomputed. For example, gtltirsame sequence to the end of the sif file
could be used to test the solution with another linear solver

RUN
Solver 1::Linear System lIterative Method = BiCgstabl
RUN

It should be noted that not quite all features support thic@dure. For example, some preconditioners
create static structures that will not be recreated.

CSC - IT Center for Science [@)sv-nD |

Chapter 3

Restart from existing solutions

Often, the user wants to restart a run. This may be neededysimpontinue an interrupted simulation
— no matter what caused the interruption — but also to readlnes needed either as initial conditions or
as boundary conditions. These features are controlled foe $@ywords in th&imulation section that
will be presented in the following sections.

3.1 Restartfile

Any output file obtained by using the keyword command
Output File = String ...

can be used to define a restart point for a new simulation. Byemtion the suffix of the file has been
result but basically it may be chosen by the user.

By default all distributed fields will be saved to the resfdet. Additionally the user may save global
variables with the following keyword

Output Global Variables = Logical
If one wants to select the fields to be saved they may be gidividually by
Output Variable i = String

wherei =1,2,3,. ...
The format of the output is either ascii or binary. Ascii ig tthefault, and binary format is enforced by
setting

Binary Output = True

The limitation of the restart functionality is that the meshwhich the previous case has been run must
be identical to that on which the new run is performed. In pelreuns, additionally, also the partitions of
the mesh have to coincide. The permuation vectors may vadyakso the field variables do not have to be
the same.

The commands for restarting are then given in 8imulation section by declaring the restart file
name as well as a restart position. For example we may specify

Simulation
Restart File = "previousrun.result"
Restart Position = 101

End

This would perform the current simulation by restartingiirthe time/iteration level 101 of the previously
stored result filgreviousrun.result
If one wants to select the fields to be restarted they may mngndividually by

CSC - IT Center for Science [@)sv-nD |

3. Restart from existing solutions 19

Restart Variable i = String

wherei =1,2,3,. ...
Upon running the new simulation, a message similar to thievidhg example should be seen in the
standard output of Elmer:

LoadRestartFile:

LoadRestartFile: ---------==-=-msemmmmeeeeeeee
LoadRestartFile: Reading data from file: previousrun.res ult
LoadRestartFile: BINARY 3.L

LoadRestartFile:

LoadRestartFile: Total number of dofs to load: 13

LoadRestartFile: Reading time sequence: 2.000E-03
LoadRestartFile: Reading timestep: 10
LoadRestartFile: Time spent for restart (s): 7.9990E-03

LoadRestartFile: All done
LoadRestartFile: ------mmmmmmmmmmmmmm e

If the number of stored timel/iteration levels is not knowrri@mp, the user can insert the command
Restart Position = 0

in order to make sure that the results for the lastly storad/iteration level are reloaded.

Result files arising from steady state simulations oftertaiarresults for multiple iteration steps (with
the result for the last step containing the converged smiitiNevertheless, these instances of solutions are
— if reloaded — interpreted to describe the solution at défifes time levels. In this case the user might want
to redefine the value of time variable for the restarted satih, especially if continuing with transient runs.
The keyword command

Restart Time = Real ...

may be given in order to manually set the time to correspoaa#noth time level of the new simulation.

3.2 Initialization of dependent variables

The initialization of variables and their boundary coratis is done by default before reading in the previous
results. That has two main implications:

1. Values set in the sectidnitial Condition are overwritten by the corresponding values of the
variable loaded afterwards from the restart file

2. Variable values given as initial or boundary conditiond apecified to depend on other variables are
not initiated with those values from the restart file by défau

The latter can be influenced with two keywor@estart Before Initial Conditions (by de-
fault False) andlinitialize Dirichlet Condition (by defaultTrue).
By setting

Restart Before Initial Conditions = Logical True

Elmer would first load the variables from the restart file amehtapply initial conditions to those variables
that have not been set by the earlier solution. This is nacgé#isone of the initial conditions depends on
the earlier solution. By default, first the initial conditi®from the solver input file are set and thereafter the
restart file (if existing) is read.

The value of the keyworhhitialize Dirichlet Condition is by default set to be true, which
means that Dirichlet conditions are set before the sinutagind thus also before the particular solver for
handling that variable is executed. If a boundary condit@ra certain variable now depends on the value
of another, the first-time Dirichlet condition is set usihg initial values of variables — either set or read in
from the restart file. If this is not wanted, the user can dwitcusing the option

CSC - IT Center for Science [@)sv-nD |

3. Restart from existing solutions 20

Initialize Dirichlet Condition = False

which will set the Dirichlet condition on the fly during the eoution of the solver associated with the
variable.

CSC - IT Center for Science [@)sv-nD |

Chapter 4

Solution methods for linear systems

4.1 Introduction

Discretization and linearization of a system of partiafetiéntial equations generally leads to solving linear
systems
Az = b, 4.1)

whereA andb are of orders x n andn x 1, respectively. The coefficient matrik resulting from the finite
element discretization has a specific feature that the riatgparse, i.e. only a few of the matrix entries in
each row differ from zero. In many applications the systemalao have a very large order so that the
chief part of the computation time in performing the simigatis typically spent by solvers for the linear
systems.

Solution methods for linear systems fall into two large gatées: direct methods and iterative methods.
Direct methods determine the solution of the linear systgatity up to a machine precision. They per-
form in a robust manner leading to the solution after a perd@ned number of floating-point operations.
Nevertheless, the drawback of direct methods is that theygpensive in computation time and computer
memory requirements and therefore cannot be applied tarlisysstems of very large order. The efficient
solution of large systems generally requires the use cftiter methods which work by generating sequences
of (hopefully) improving approximate solutions.

ElmerSolver provides access to both direct and iterativehats. The iterative methods available fall
into two main categories: preconditioned Krylov subspae¢hmds and multilevel methods. Iteration meth-
ods that combine the ideas of these two approaches may alsonisructed. Such methods may be very
efficient leading to a solution after a nearly optimal numtfesperation counts.

The development of efficient solution methods for lineatesys is still an active area of research, the
amount of literature on the topic being nowadays vast. Theddithe following discussion is to provide
the user the basic knowledge of the solution methods availalEImerSolver. The detailed description of
methods is omitted. For a more comprehensive treatmenetuer is referred to references mentioned.

4.2 Direct methods

A linear system may be solved in a robust way by using direthous. ElmerSolver offers two main options
for using direct methods. The default method utilizes thé-lweown LAPACK collection of subroutines for
band matrices. In practice, this solution method can onlydsal for the solution of small linear systems as
the operation count for this method is of order,

The other direct solver employs the Umfpack routines toessparse linear systemy.[Umfpack uses
the Unsymmetric MultiFrontal method. In practice it may be tmost efficient method for solving 2D
problems as long as there is enough memory available.

It should be noted that the success of the direct solversdispery much on the bandwidth of the sparse
matrix. In 3D these routines therefore usually fail miséyab

CSC - IT Center for Science [@)sv-nD |

4. Solution methods for linear systems 22

Elmer may be also compiled withllumps SuperLU , andPardiso . The licensing scheme of these
software do not allow the distribution of precompiled birarbut everybody may themselves compile a
version that includes these solvers. Many times the besatisolver for a particular problem may be found
among these.

4.3 Preconditioned Krylov methods

ElmerSolver contains a set of Krylov subspace methods ®iténative solution of linear systems. These
methods may be applied to large linear systems but rapidecgance generally requires the use of precon-
ditioning.

4.3.1 Krylov subspace methods

The Krylov subspace methods available in ElImerSolver are

e Conjugate Gradient (CG)

Conjugate Gradient Squared (CGS)

Biconjugate Gradient Stabilized (BiCGStab)
BiCGStab()

Transpose-Free Quasi-Minimal Residual (TFQMR)

Generalized Minimal Residual (GMRES)
e Generalized Conjugate Residual (GCR)

Both real and complex systems can be solved using thesathlgsr For the detailed description of some
of these methods se8][and [4].

A definite answer to the question of what is the best iterati@thod for a particular case cannot be
given. In the following only some remarks on the applicapitif the methods are made.

The CG method is an ideal solution algorithm for cases whaeoefficient matrixd is symmetric and
positive definite. The other methods may also be appliedsesaherel is non-symmetric. It is noted that
the convergence of the CGS method may be irregular. The Bi@lis&hd TFQMR methods are expected
to give smoother convergence. In cases where BiCGStab a@o@gork well it may be advantageous to use
the BiCGStab() method, with¢ > 2 a parameter. Faster convergence in terms of iteration souay be
expected for increasing values of the paramététowever, since more work is required to obtain the iterate
as/ increases, optimal performance in terms of computatiomakuwnay be realized for quite a small value
of ¢. Starting with the valué = 2 is recommended.

The GMRES and GCR methods generate gradually improvingtésithat satisfy an optimality condi-
tion. The optimality may however come with a significant cgiste the computational work and computer
memory requirements of these methods increase as the nahbenations grows. In practice these meth-
ods may be restarted after solution updates have been performed in order to avoid ttreasing work
and storage requirements. The resulting methods are edfésras the GMRE%{) and GCR{n) meth-
ods. Here the choice of: has to be controlled by the user. It should be noted that theezgence of the
restarted algorithms may be considerably slower than fifatloversions. Unfortunately, general guidelines
for determining a reasonable value farcannot be given as this value is case-dependent.

4.3.2 Basic preconditioning strategies

The performance of iterative Krylov methods depends gyeatl the spectrum of the coefficient matrix
A. The rate at which an iteration method converges can oftempeoved by transforming the original
system into an equivalent one that has more favorable speuwperties. This transformation is called
preconditioning and a matrix which determines the tramsédion is called a preconditioner.

CSC - IT Center for Science [@)sv-nD |

4. Solution methods for linear systems 23

In ElImerSolver preconditioning is usually done by transforg (4.1) into the system
AM ™'z =b, (4.2)

where the preconditioneY/ is an approximation tod andz is related to the solutiom by 2 = Mzx. In
practice, the explicit construction of the inver&~! is not needed, since only a subroutine that for a given
v returns a solutiom to the system

Mu = (4.3)

is required.

The solver of EImer provides several ways to obtain predadirs. The basic strategies described in
this section may be used to form the Jacobi preconditionérireomplete factorization preconditioners.
In addition to these preconditioners which remain statipisuring the linear system iteration, the solver
of Elmer allows the use of variable preconditioning where #ttion of the preconditioner is defined in
terms of applying another iteration method to auxiliaryqameditioning systems. Such inner-outer iterations
are typically applied in connection with block preconditiss and preconditioning by multilevel methods.
These advanced preconditioning strategies are consideSzttion4.5below.

The Jacobi preconditioner is simply based on takifigo be the diagonal ofl. More sophisticated pre-
conditioners may be created by computing incomplete Lbféxations ofA. The resulting preconditioners
are referred to as the ILU preconditioners. This approaebsgihe preconditioner matrix/ in the form
M = LU whereL andU are lower and upper triangular with certain elements thaean the factorization
process ignored.

There are several ways to choose a set of matrix positiorisateaallowed to be filled with nonzero
elements. ILU preconditioners of fill levéY referred to as the ILU(N) preconditioners are built so that
ILU(0) accepts nonzero elements in the positions in whidhas nonzero elements. ILU(1) allows nonzero
elements in the positions that are filled if the first step ofi§&&an elimination is performed fot. ILU(2)
accepts fill in positions that are needed if the next step afsSian elimination is performed with ILU(1)
factorization, etc.

Another approximate factorization strategy is based onarigal tolerances. The resulting precondi-
tioner is referred to as the ILUT preconditioner. In the ti@aof this preconditioner Gaussian elimination
is performed so that elements of a given row of the LU factdiin are obtained but only elements whose
absolute value (scaled by the norm of all values of the rowy&r a given threshold value are accepted in
the preconditioner matrix.

Obviously, the additional computation time that is sperrgating the preconditioner matrix and solving
systems of the typed(3) should be compensated by faster convergence. FindingtamapLU precondi-
tioner for a particular case may require the use of trial amoreStart with ILU(0) and try to increase the
fill level N. As N increases, more and more elements in the incompleteattdffization of the coefficient
matrix are computed, so the preconditioner should in ppiedie better and the number of iterations needed
to obtain a solution should decrease. At the same time theamemsage grows rapidly and so does the time
spent in building the preconditioner matrix and in applyihg preconditioner during iterations. The same
applies to the ILUT preconditioner with decreasing thrédlvalues.

4.4 Multilevel methods

A class of iterative methods referred to as multilevel mdthprovides an efficient way to solve large linear
systems. For certain class of problems they perform neatiynally, the operation count needed to obtain a
solution being nearly of ordet. Two different multilevel-method approaches are avadablElmerSolver,
namely the geometric multigrid (GMG) and algebraic muldgAMG).

4.4.1 Geometric multigrid

Given a mesHhr; for the finite element discretization of problem the geometrultigrid method utilizes
a set of coarser meshfg, k = 2,..., N, to solve the linear system arising from the discretizati@me
of the fundamental ideas underlying the method is based @id#a of coarse grid correction. That is, a

CSC - IT Center for Science [@)sv-nD |

4. Solution methods for linear systems 24

coarser grid is utilized to obtain an approximation to theem the current approximate solution of the
linear system. The recursive application of this strategyls us to multigrid methods.

To utilize different meshes multigrid methods require tegelopment of methods for transferring vec-
tors between fine and coarse meshes. Projection operagoused to transfer vectors from a fine m&zh
to a coarse mesf,; and will be denoted by, ™", while interpolation operato’, , transfer vectors from
a coarse mesh to a fine mesh.

The multigrid method is defined by the following recursivgaithm: GivenA, b and an initial guessg
for the solution of the systemxz = b seti = 1 and do the following steps:

1. If i = N, then solve the systemiz = b by using the direct method and return.

2. Do pre-smoothing by applying some iterative algorithmgaiven number of times to obtain a new
approximate solution.

3. Perform coarse grid correction by starting a new apptinatf this algorithm withA = If“AI}H,
b= I (Ay —b),i =i+ 1 and the initial guess = 0.

4. Compute a new approximate solution by settjng v + Iz‘i+1€

5. Do post-smoothing by applying some iterative algoritlome given number of times to obtain a new
approximate solution.

6. If the solution has not yet converged, go to step 2.

In ElImerSolver one may choose the Jacobi, CG or BiCGStalrittigpas the method for smoothing itera-
tions.

The full success of multigrid methods is based on the faderabmbination of the properties of ba-
sic iteration methods and methods for transferring vediete/een meshes. The smoothing iterations give
rapid convergence for oscillatory solution componentdevtbarse grid correction entails an efficient solu-
tion method for smooth solution components. For a comprahemtroduction to the geometric multigrid
method the reader is referred @.

4.4.2 Algebraic multigrid

In many cases the geometric multigrid may not be applied usxave do not have the luxury of having
a set of appropriate hierarchical meshes. The alternaitieel algebraic multigrid (AMG) method which
uses only the matrixl to construct the projectors and the coarse level equatidhviG is best suited for
symmetric and positive semidefinite problems. For othee$yqf problems the standard algorithm may fail.
For more information on AMG see referené&. [

The AMG method has two main phases. The set-up phase indluelescursive selection of the coarser
levels and definition of the transfer and coarse-grid opesafl he solution phase uses the resulting compo-
nents to perform a normal multigrid cycling until a desiredwaracy is reached. The solution phase is similar
to that of the GMG.

Note that the AMG solvers in ElmerSolver are not fully matuféey may provide good solutions for
some problems while desperately failing for others.

Classical Ruge-Stiiben algorithm

The coarsening is performed using a standard Ruge-Stila@sesong algorithm. The possible connections
are defined by the entries in the matrix The variable is strongly coupled to another variabléf

a;j < —c_max|a;| OF ai; > ¢y max|akl, (4.4)

where0 < ¢ < 1 and0 < ¢4 < 1 are parameters. Typically. ~ 0.2 andcy ~ 0.5. Once the negative
(P~) and positive PT) strong couplings have been determined the variables aidediinto coarse() and
fine (F) variables using the standard coarsening scheme.

CSC - IT Center for Science [@)sv-nD |

4. Solution methods for linear systems 25

The interpolation matrix may be constructed using €h&-splitting and the strong couplings of the
matrix. The interpolation of coarse nodes is simple as tlegyain unchanged. The interpolation of fine
nodes starts from the fact the smooth erronust roughly satisfy the conditiate = 0 or

ai;€; + Z ajje; = 0. (45)
J#i
By manipulation
wiei+ai Y age; B Y age; =0, (4.6)
jecnp;” jecnp;r
where > >
. — Qi o Qs
0 — i€P Y and 8 = jer;” v 4.7)

Zjecm); Qij ZjeCij Qij

The interpolation thus becomes

- -_— - .. L. ; e P‘7
€; = wise: With w,: = { Oézam/a/na] 1+7 (48)
Z je;a . Y —fiaij/ai, je P,

This is known adirect interpolation It may be modified by using also the strolgnodes in the
interpolation. This means that in formul&.9) the following elimination is made for eaghc F' N P;

ej — — Z ajker/a;. (4.9)

keCNP;

This is known astandard interpolationIn practice it means that the number of nodes used in thgjiote
lation is increased. This may be important to the qualityhef interpolation particularly if the number of
directC-neighbors is small.

After the interpolation weights have been computed the lestatoefficients may be truncated if they
are smallj.e, w; < ¢, max |wyg|, wherec,, = 0.2. The other values must accordingly be increased so that
the sum of weights remains constant. The truncation is &asenpreventing the filling of the coarse level
matrices.

Cluster multigrid

There is also an implementation of the agglomeration ortetusiultigrid method. It is a variant of the
algebraic multigrid method. In this method the componenésgrouped and the coarse-level matrices are
created simply by summing up the corresponding rows andwusu In other words, the projection matrix
includes just ones and zeros.

The cluster multigrid method should be more robust for peotd where it is difficult to generate an
optimal projection matrix. However, for simple problemssiusually beaten by the standard Ruge-Stiiben
method.

4.5 Preconditioning via inner iterations

In the following, we return to the subject of preconditiomend consider the construction of more advanced
preconditioners that utilize the idea of variable prectinding. We recall that the procedural description
of preconditioning allows us to consider schemes wheredtieraof M ~! in (4.2 is replaced by perform-
ing an inexact solution of the preconditioning system oftihpe @.3) with other iterative methods. In this
connection, the iteration steps of the method applied tgtkeonditioning system are referred to as inner
iterations, while the iteration steps of the method whidbaeg preconditioned are referred to as outer iter-
ations. In addition, the concept of variable preconditignis motivated by the fact that the preconditioner
can change during the outer iteration process. It shouldbedrthat all the Krylov methods do not neces-
sarily admit using variable preconditioning. Anyhow, GCBaithm can always be employed as the outer
iterative method, and we generally recommend using it imeation with inner-outer iterations.

CSC - IT Center for Science [@)sv-nD |

4. Solution methods for linear systems 26

4.5.1 Preconditioning by multilevel methods

Multilevel methods are iteration methods on their own bettban also be applied to define preconditioners
for the Krylov subspace methods. This preconditioning apph corresponds to taking = A in (4.3) and
performing an inaccurate solution of the resulting systesimgimultilevel methods to obtain. A rather
mild stopping criterion may be used in this connection. Brelitioning by multilevel methods may lead to
very efficient solution methods for large linear systems.

4.5.2 Block preconditioning

Performing preconditioning by solving auxiliary systertesatively also arises naturally in connection with
a strategy referred to as the block preconditioning. Tacthie concept of block preconditioning is that
the unknowns of the linear system are grouped into sets @ihlas so that a natural block partitioning of
the linear system is induced. Often such partitioning isiredly induced by physics. Block factorizations,
block matrix splittings, or even other iteration schemeseloleon updating different types of variables inde-
pendently can then be utilized to derive preconditionehe Bottom line is that such block preconditioners
typically lead to solving subsidiary problems which can beadied by employing inner iterations.

The designs of efficient block preconditioners tend to imegbroblem-specific features, especially, if
block factorizations or other segregated iteration mestavé used to derive preconditioners. Therefore the
model solvers in Elmer that offer the possibility of usingdk preconditioning have originally been devel-
oped independently, with the block preconditioning apilieing a part of the solver-level implementation.
Recently, routines which are suited for constructing blpdconditioners on a more general level have also
been implemented.

4.6 Keywords related to linear system solvers
The following keywords may be given in Solver section of thiver input file (.sif file).

Linear System Solver String
Using this keyword the type of linear system solver is seléct his keyword may take the following
values:
e Direct
e lterative
e Multigrid

Herelterative andMultigrid refer to the Krylov and multilevel methods, respectively.

Linear System Direct Method String
If the value of theLinear System Solver keyword is set to bBirect , one may choose a band
matrix solver with the valu@anded or a sparse matrix solver with the valuenfpack , mumps
Pardiso orsuperlu ,. The defaultiBanded.

Linear System Iterative Method String
If the value of theLinear System Solver keyword is set to b&erative , one should choose
a Krylov method by setting the value of this keyword to be ohthe following alternatives:
[] CG
e CGS
e BICGStab
e BiCGStabl
e TFQMR
¢ GMRES
e GCR

CSC - IT Center for Science [@)sv-nD |

4. Solution methods for linear systems 27

See also th!G Smoother keyword.

Linear System GMRES Restart Integer [10]
The restart parametes for the GMRES#n) method may be given using this keyword.

Linear System GCR Restart Integer
The restart parametes for the GCR{n) method may be given using this keyword. The default option
is that restarting is not performed, i.e. the full GCR is used

BiCGstabl polynomial degree Integer
The parametef for the BiCGStab() method may be given. By default the minimal applicable galu
¢ =2is used.

Linear System Preconditioning String

A preconditioner for the Krylov methods may be declared hyirs the value of this keyword to be
one of the following alternatives:

e None

e Diagonal

e ILUn , where the literah may take values 0,1,...,9.
e ILUT

Multigrid

See also thG Preconditioning keyword.

Linear System ILUT Tolerance Real [0.0]
This keyword is used to define the value of the numerical éolee for the ILUT preconditioner.

Linear System Convergence Tolerance Real [0.0]
This keyword is used to define a stopping criterion for theldwynethods. The approximate solution
is considered to be accurate enough if the iterate satisfies

Az bl _
I

wheree is the value of this keyword. See alstG Tolerance .

Linear System Max Iterations Integer [0]
This keyword is used to define the maximum number of the imrathe Krylov methods are permit-
ted to perform. If this limit is reached and the approximateton does not satisfy the stopping crite-
rion, EImerSolver either continues the run using the cummpproximate solution as the solution of the
system or aborts the run depending on the valueiméar System Abort Not Converged
keyword. See alsMG Max lIterations keyword.

Linear System Abort Not Converged Logical [True]
If the value of this keyword is set to B&ue , EImerSolver aborts the run when the maximum number
of iterations the algorithm is permitted to perform is reagland the approximate solution does not
satisfy the stopping criterion. Otherwise the run will bentioued using the current approximate
solution as the solution of the system (this may lead to tiesiht later steps of computation).

Linear System Residual Output Integer [1]
By default the iterative algorithms display the value of (kealed) residual norm after each iteration
step. Giving a value > 1 for this keyword may be used to display the residual norm aftgr every
n iterations. If the value 0 is given, the residual outputisadled.

CSC - IT Center for Science [@)ev-no |

4. Solution methods for linear systems 28

Linear System Precondition Recompute Integer [1]
By default the ElmerSolver computes the preconditionemwdrew application of iterative algorithm
is started. If the value of this keyword is set to bethe preconditioner is computed only after
n successive subroutine calls for linear systems arisiog fsame source. This may speed up the
solution procedure especially in cases where the coeffiortrix does not change much between
successive subroutine calls. On the other hand if the caffimatrix has changed significantly, the
preconditioner may not be efficient anymore.

Optimize Bandwidth Logical [True]
If the value of this keyword is set to berue , the Cuthill-McKee bandwidth optimization scheme is
used to order the unknowns in such a way that band matricdsedaandled efficiently. The bandwidth
optimization is recommended when the direct solver or inglete factorization preconditioners are
used.

The keywords beginning witMGare activated only if either theinear System Solver orLinear
System Preconditioning keyword has the valuBlultigrid . If a multigrid method is used as the
linear system solver, some keywords starting WwitBmay be replaced by corresponding keywords starting
with phraselinear System . It should be noted that in the case of a multigrid solverdheme some
limitations to what values the keywords starting with thegsleLinear System may take, see below.

MG Levels Integer [1]
This keyword is used to define the number of levels for the igridt method.

MG Equal Split Logical [False]
A hierarchy of meshes utilized by the multigrid method maybeerated automatically by setting the
value of this keyword to b&rue . The coarsest mesh must be supplied by the user and is dklare
the usual way in the Header section of the solver input filee @ther meshes are obtained using an
equal division of the coarse mesh. The solution of the prabéll be sought for the finest mesh.

MG Mesh Name File
A hierarchy of meshes utilized by the multigrid method maysbpplied by the user. A base name of
the mesh directories is declared using this keyword. Theasasimesh directories must be composed
of the base name appended with a level number such that iatbefiame isngridmesh , the mesh
directories should have namegridmeshl , mgridmesh2 , etc. The meshes are numbered starting
from the coarsest mesh. In addition, the finest mesh must dared in the Header section of the
solver input file. It should be noted that th&5 Equal Split keyword must be set to bEalse
to enable the use of user-supplied meshes.

MG Max lIterations Integer [0]
If a multigrid method is used as a preconditioner for the Kvyiethods, the value of this keyword
defines the maximum number of iterations the multigrid mettsoallowed to perform to solve the
preconditioning equatiord(3). Usually one or two iterations are sufficient. If a multdyrnethod
is the linear system solver, the use of this keyword is sintdathat of theLinear System Max
Iterations keyword.

MG Convergence Tolerance Real [0.0]
If a multigrid method is used as a preconditioner for the Kwyinethods, this keyword defines the
solution accuracy for the preconditioning equatidr8). This keyword is not usually needed if tM&G
Max lIterations keyword has a small value. If a multigrid method is the linggstem solver,
the use of this keyword is similar to that of thenear System Convergence Tolerance
keyword.

MG Smoother String
This keyword defines the algorithm for pre- and post-smagthilt may take one of the following
values:

e Jacobi

CSC - IT Center for Science [@)sv-nD |

4. Solution methods for linear systems 29

e CG
e BIiCGStab

If the linear system solver is a multigrid method, th@ear System lIterative Method

keyword may be used instead of this keyword, but only theetlalgorithms mentioned here can be
applied.

MG Pre Smoothing Iterations Integer [0]
This keyword defines the number of pre-smoothing iterations

MG Post Smoothing Iterations Integer [0]
This keyword defines the number of post-smoothing iteration

MG Preconditioning String

This keyword declares the preconditioner for the algorithinich is used in smoothing iterations. It
may take one of the following values:

e None
e ILUn , where the literah may take values 0,1,...,9.
o ILUT

Note that this keyword is not related to using multigrid noetlas a preconditioner. It is also noted
that preconditioning the smoothing algorithms does notstework well if a multigrid method is
used as a preconditioner for Krylov methods.

MG ILUT Tolearance Real [0.0]

This keyword defines the numerical tolerance for the ILUTcpralitioner in connection with smooth-
ing iterations.

The keywords for the algebraic multigrid solver are in aégpgrt the same as for the geometric multigrid.
There are however some keywords that are related only to AMG.

MG Lowest Linear Solver Limit Integer
This value gives a lower limit for the set of coarse nodesrafteich the recursive multilevel routine
is terminated. A proper value might be around 100.

MG Recompute Projector Logical
This flag may be used to enforce recomputation of the prajexdoh time the algebraic multigrid
solveris called. The defaultzalse as usually the same projector is appropriate for all contjmuts.

MG Eliminate Dirichlet Logical

At the highest level the fixed nodes may all be set to be coamnse their value is not affected by the
lower levels. The default isrue

MG Eliminate Dirichlet Limit Real
Gives the maximum fraction of non-diagonal entries for @dbilet node.

MG Smoother String
In addition to the selection for the GMG optisor (symmetric over relaxation) is possible.

MG SOR Relax String
The relaxation factor for the SOR method. The defaultis 1.

MG Strong Connection Limit Real
The coefficient_ in the coarsening scheme. Default is 0.25.

MG Positive Connection Limit Real
The coefficient. in the coarsening scheme. Default is 1.0.

CSC - IT Center for Science [@)ev-no |

4. Solution methods for linear systems 30

MG Projection Limit Real
The coefficient,, in the truncation of the small weights. The defaultis 0.1.

MG Direct Interpolate Logical
Chooses between direct and standard interpolation. TlaailiéSFalse .

MG Direct Interpolate Limit Integer
The standard interpolation may also be applied to nodesamnitha small number of coarse connec-
tion. This gives the smallest number of nodes for which dirgerpolation is used.

Finally, there are also some keywords related only to thsteling multigrid.

MG Cluster Size Integer
The desired choice of the cluster. Possible choices ar4,3,3,.and zero which corresponds to the
maximum cluster.

MG Cluster Alpha Real
In the clustering algorithm the coarse level matrix is ndiropl for getting the correct convergence.
Tuning this value between 1 and 2 may give better performance

MG Strong Connection Limit Real
This is used similarly as in the AMG method except it is reddi® positive and negative connections
alike.

MG Strong Connection Minimum Integer

If the number of strong connections with the given limit isadl@r than this number then increase the
set of strong connection if available connections exist.

4.7 Implementation issues

4.7.1 The sparse matrix storage

To be efficient, iteration methods require that a matrixteeproduct for sparse matrices is efficiently im-
plemented. A special storage scheme called the Compresse®®Rrage (CRS) is used in ElImerSolver
to store only those matrix coefficients that differ from zero

The matrix structure is defined in modulgpes as:

TYPE Matrix_t
INTEGER :: NumberOfRows

REAL(KIND=dp), POINTER :: Values(:)
INTEGER, POINTER :: Rows(:), Cols(:), Diag(:)

END TYPE Matrix_t

The matrix type has several additional fields, but the basiage scheme can be implemented using the
fields shown. The arrayalues is used to store the nonzero elements of the coefficientxndthie array
Cols contains the column numbers for the elements stored in tag ®ialues , while the arrayRows
contains indices to elements that start new rows. In addiRow(n+1) gives the number of nonzero
matrix elements + 1. The arr&iag is used to store the indices of the diagonal elements.

For example, to go through the matrix row by row the followlagp may be used

USE Types

TYPE(Matrix_t), POINTER :: A
REAL(KIND=dp):: val
INTEGER :: i, j, row, col

CSC - IT Center for Science [@)sv-nD |

4. Solution methods for linear systems 31

DO i=1, A % NumberOfRows

PRINT =, 'Diagonal element for row ', i, " is ', A % Values(A % Diag(i))
DO j=A % Rows(i), A % Rows(i+1)-1
row = i

col = A % Cols())
val = A % Values())
PRINT =*, 'Matrix element at position: ’, row,col, ’ is
END DO
END DO

, val

4.7.2 Subroutine calls

Most of the functionality of the sparse linear system solvkethe ElmerSolver is available by using the
function call

Norm = DefaultSolve().

The return valu&orm is a norm of the solution vector.

Sometimes it may be convenient to modify the linear systeforbesolving it. A Fortran function which
performs this modification can be written by the user withrthene of the function being declared in the
solver input file. For example, this technique may be use@fmed a user-supplied linear system solver.

If the name of the user-supplied Fortran functiopiiec and it can be found in the file having the name
Filename , the declaration

Before Linsolve File Filename proc

in the solver input file has the effect that the function will alled just before the default call of linear
system solver. The arguments the function can take are fixédwe declared as

FUNCTION proc(Model, Solver, A, b, x, n, DOFs, Norm) RESULT(stat)
USE SolverUtils
TYPE(Model_t) :: Model
TYPE(Solver_t) :: Solver
TYPE(Matrix_t), POINTER :: A
REAL(KIND=dp) :: b(}), x(:), Norm
INTEGER :: n, DOFs, stat

END FUNCTION proc

Here the Model structure contains the whole definition of élraer run. The Solver structure contains
information for the equation solver from which this linegstem originates. The coefficient matéis in
CRS formatp is the right-hand side vector, axdcontains the previous solution. The argumerns the
number of unknowns, andOFsis the number of unknowns at a single node.

If the return value from this funct